By Topic

Game theoretic outage compensation in next generation mobile networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kibria, M.R. ; Sch. of Electr. & Inf. Eng., Univ. of Sydney, Sydney, NSW, Australia ; Jamalipour, A.

Changes in network dynamics (e.g., link failure, congestion, buffer overflow and so on) may render ubiquitous service access untenable in the Next Generation Mobile Network (NGMN). Since the commercial viability of a network in a competitive market depends on the perceived user satisfaction, to atone for the loss of the guaranteed service access, it is desirable to compensate the users either with future quality-of-service (QoS) enhancements and/or price reductions. Focusing on the price reduction aspect, this paper proposes a non-cooperative game theory based compensation algorithm that derives the best outage compensation (i.e., price reduction for the outage period t) over different service types. Taking into account all-IP based applications in the future, the service types are categorized into different classes such as flat rate based (i.e., cents for the entire session(s)), time based (i.e., cents per minute), volume based (i.e., cents per MB), etc., whereupon the compensation algorithm is translated into an n-player game, based on the current subscription profiles. With step sized cost reductions, the selection of the outage compensation is governed by the Nash equilibrium points and fairly allocates cost reduction among the ongoing service types.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 5 )