By Topic

Fast Kernel-Based Independent Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hao Shen ; Dept. of Inf. Eng., Australian Nat. Univ., Canberra, ACT, Australia ; Stefanie Jegelka ; Arthur Gretton

Recent approaches to independent component analysis (ICA) have used kernel independence measures to obtain highly accurate solutions, particularly where classical methods experience difficulty (for instance, sources with near-zero kurtosis). FastKICA (fast HSIC-based kernel ICA) is a new optimization method for one such kernel independence measure, the Hilbert-Schmidt Independence Criterion (HSIC). The high computational efficiency of this approach is achieved by combining geometric optimization techniques, specifically an approximate Newton-like method on the orthogonal group, with accurate estimates of the gradient and Hessian based on an incomplete Cholesky decomposition. In contrast to other efficient kernel-based ICA algorithms, FastKICA is applicable to any twice differentiable kernel function. Experimental results for problems with large numbers of sources and observations indicate that FastKICA provides more accurate solutions at a given cost than gradient descent on HSIC. Comparing with other recently published ICA methods, FastKICA is competitive in terms of accuracy, relatively insensitive to local minima when initialized far from independence, and more robust towards outliers. An analysis of the local convergence properties of FastKICA is provided.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 9 )