Cart (Loading....) | Create Account
Close category search window

State Space Modeling for 3-D Variation Propagation in Rigid-Body Multistage Assembly Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian Liu ; Dept. of Syst. & Ind. Eng., Univ. of Arizona, Tucson, AZ, USA ; Jionghua Jin ; Jianjun Shi

Dimensional variation propagation modeling is a critical enabling technique for product quality variation reduction in a multistage assembly process (MAP). However, the complex inter-stage correlations make the modeling extremely difficult. This paper aims to improve the existing techniques by developing a generic state space approach to modeling 3-D variation propagation induced by various types of variation sources in general MAPs. A concept of differential motion vector (DMV) is adopted to represent deviations with respect to four types of coordinate systems and to formulate the variation propagation as a series of homogeneous transformation among different coordinate systems. Based on this representation and formulation strategy, a novel generic mechanism is proposed to model the effect of variations induced by part fabrication processes and a MAP. A case study on 3-D variation propagation in a panel fitting process is presented to demonstrate the modeling and analysis capability of the proposed methodology.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 2 )

Date of Publication:

April 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.