Cart (Loading....) | Create Account
Close category search window

Improvement on lithography pattern profile by plasma treatment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Soo, C.P. ; Department of Materials Science, National University of Singapore, Singapore 119260 ; Bourdillon, A.J. ; Valiyaveettil, S. ; Huan, A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

New chemical information has been obtained which explains “footing” and “bottom pinching” effects in chemically amplified (CA) resists on a silicon nitride surface. X-ray photoelectron spectroscopy measurements indicate that the residual alkaline molecules on the nitride surface play a major role in the formation of nitride footing. It appears that the organic contaminants are not responsible for nitride footing. O2 and N2O/SiH4 plasma treatment are used to modify the silicon nitride surface. Less severe footing is observed if the nitride surface is treated with N2O/SiH4 plasma. This is attributed to the deposition of a thin oxide cap on the nitride substrate, which suppresses the surface basicity. However, extended N2O plasma treatment causes resist bottom pinching. This is ascribed to the surface acidity of a newly formed oxide cap which enhances the CA resist development process. Results show that the N (1s) peak, after extended N2O/SiH4 plasma treatment, has shifted to a higher binding state which suggests that the nitride surface becomes acidic, causing bottom pinching.© 1999 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:17 ,  Issue: 4 )

Date of Publication:

Jul 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.