By Topic

Statistical comparison of color model-classifier pairs in hematoxylin and eosin stained histological images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mete, M. ; Inf. Technol., Univ. of Arkansas for Med. Sci., Little Rock, AR ; Topaloglu, U.

Color is the most critical information for assessing histological images. However, in literature, there is no standard color space in which a particular color points are represented for computer vision tasks. In this paper, we evaluated 11 color models with three different learning schemas for their performance in classifying tumor-related colors. The color models we studied are CIELAB, CIELUV, CIEXYZ, CMY, CMYK, HSL, HSV, Hunter-LAB, NRGB, RGB, and SCT. With 11 color models, prediction accuracies of three well-known classifiers, namely SVMs, C4.5, and Naive Bayes, are statistically compared on a large dataset of 3494 Hematoxylin and Eosin (HE) stained histopathologic images. Surprisingly, experiment results show that in contrast to general assumptions, there is no single model that is better than others in every case. However, C4.5 outperformed other two classifiers by obtaining average F-measure of 0.9989. Of 11 color models, we suggest the pair of C4.5-SCT as the most accurate classification framework for tumor identification in HE stained histological images.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology, 2009. CIBCB '09. IEEE Symposium on

Date of Conference:

March 30 2009-April 2 2009