By Topic

Assessing the impact of network depth on the analysis of PPI networks: A case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blayney, J.K. ; Fac. of Comput. & Eng., Univ. of Ulster, Newtownabbey ; Haiying Wang ; Huiru Zheng ; Azuaje, F.

Recent years have seen a growing interest in the incorporation of protein-protein interaction (PPI) networks to support functional genomic research. Often a default depth is assumed by network inference software. This case study considers the impact of network depth on the analysis of PPI networks using seven proteins known to be relevant to heart failure as inputs into the analysis. This paper analyses how the characteristics of a PPI network vary according to the level examined, suggesting that the investigation of network topology is an essential first step in PPI analysis. The classification of nodes, in terms of degree and betweenness centrality, within the network is also considered. The effect of network depth is also proved to be significant in the identification of potentially essential proteins with large connectivity and/or high betweenness centrality values.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology, 2009. CIBCB '09. IEEE Symposium on

Date of Conference:

March 30 2009-April 2 2009