By Topic

Maximum-likelihood bearing estimation with partly calibrated arrays in spatially correlated noise fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stoica, Petre ; Syst. & Control Group, Uppsala Univ., Sweden ; Viberg, M. ; Kon Max Wong ; Qiang Wu

The problem of using a partly calibrated array for maximum likelihood (ML) bearing estimation of possibly coherent signals buried in unknown correlated noise fields is shown to admit a neat solution under fairly general conditions. More exactly, this paper assumes that the array contains some calibrated sensors, whose number is only required to be larger than the number of signals impinging on the array, and also that the noise in the calibrated sensors is uncorrelated with the noise in the other sensors. These two noise vectors, however, may have arbitrary spatial autocovariance matrices. Under these assumptions the many nuisance parameters (viz., the elements of the signal and noise covariance matrices and the transfer and location characteristics of the uncalibrated sensors) can be eliminated from the likelihood function, leaving a significantly simplified concentrated likelihood whose maximum yields the ML bearing estimates. The ML estimator introduced in this paper, and referred to as MLE, is shown to be asymptotically equivalent to a recently proposed subspace-based bearing estimator called UNCLE and rederived herein by a much simpler approach than in the original work. A statistical analysis derives the asymptotic distribution of the MLE and UNCLE estimates, and proves that they are asymptotically equivalent and statistically efficient. In a simulation study, the MLE and UNCLE methods are found to possess very similar finite-sample properties as well. As UNCLE is computationally more efficient, it may be the preferred technique in a given application

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 4 )