By Topic

Characterization of the NiFe sputter etch process in a rf plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.2187998 

The sputter etching of NiFe thin films by Ar ions in a rf plasma has been studied and characterized with the use of a Langmuir probe. The NiFe sputter etch rate was found to depend strongly on incident ion energy, with the highest NiFe etch rates occurring at high rf bias power, low pressure, and moderate rf source power. NiFe etch rates initially increased with increasing rf source power, then saturated at higher rf source powers. Pressure had the weakest effect on NiFe etch rates. Empirically determined sputter yields based on the NiFe etch rates and ion current densities were calculated, and these compared favorably to sputter yields determined using the sputtering model proposed by Sigmund [Phys. Rev. 184, 383 (1969)].

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:24 ,  Issue: 3 )