Cart (Loading....) | Create Account
Close category search window

Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tempez, A. ; Nitride Materials and Devices Laboratory, SVEC, University of Houston, Houston, Texas 77204-5507 ; Bensaoula, A. ; Schultz, A.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The oxidation of an amorphous TiAlN coating has been studied by in situ direct recoil spectroscopy (DRS) and mass spectroscopy of recoiled ions (MSRI) and ex situ x-ray photoelectron spectroscopy (XPS). DRS and MSRI monitored the changes in surface composition as the sample was heated to 460 °C under an 18O2 pressure of 10-6 Torr. Angular resolved XPS data were acquired for thickness-dependence information. The initial surface was partially oxidized from air exposure. Both DRS and XPS showed the Al-rich near surface and the presence of N in the subsurface. As shown by DRS and MSRI, oxidation at elevated temperatures yielded surface nitrogen loss and Ti enrichment. XPS confirmed the preferential formation of TiO2 on the surface. This study also provides a comparison between the direct recoil (neutrals and ions) and the ionic recoil signals. In our conditions, the negative ionic fraction of all elements except H tracks their true surface content variations given by DRS. The results were compared with early work performed on identical samples. In this case the TiAlN film was oxidized with an O2 pressure in the mTorr range and the surface changes are followed in situ by positive MSRI and XPS. This experiment also indicates that Al and N are buried under TiO2 but from 600 °C. © 2002 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:20 ,  Issue: 4 )

Date of Publication:

Jul 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.