By Topic

Computation of the asymptotic bias and variance for simulation of Markov reward models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
van Moorsel, A.P.A. ; Center for Reliable & High Performance Comput., Illinois Univ., Urbana, IL, USA ; Kant, L.A. ; Sanders, W.H.

The asymptotic bias and variance are important determinants of the quality of a simulation run. In particular, the asymptotic bias can be used to approximate the bias introduced by starting the collection of a measure in a particular state distribution, and the asymptotic variance can be used to compute the simulation time required to obtain, a statistically significant estimate of a measure. While both of these measures can be computed analytically for simple models and measures, e.g., the average buffer occupancy of an M/G/1 queue, practical computational methods have not been developed for general model classes. Such results would be useful since they would provide insight into the simulation time required for particular systems and measures and the bias introduced by a particular initial state distribution. We discuss the numerical computation of the asymptotic bias and variance of measures derived from continuous-time Markov reward models. In particular, we show how both measures together can be efficiently computed by solving two systems of linear equations. As a consequence of this formulation, we are able to numerically compute the asymptotic bias and variance of measures defined on very large and irregular Markov reward models. To illustrate this point, we apply the developed algorithm to queues with complex traffic behavior, different service time distributions, and several alternative scheduling disciplines that may be typically encountered in nodes in high-speed communication networks

Published in:

Simulation Symposium, 1996., Proceedings of the 29th Annual

Date of Conference:

8-11 Apr 1996