Cart (Loading....) | Create Account
Close category search window

Analysis of silicon oxynitrides with spectroscopic ellipsometry and Auger spectroscopy, compared to analyses by Rutherford backscattering spectrometry and Fourier transform infrared spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This work addresses the issues of whether spectroscopic ellipsometry, using the effective medium approximation (SE-EMA), may be used meaningfully to analyze plasma-enhanced chemical vapor deposition silicon nitride films. We use Rutherford backscattering spectrometry and Fourier transform infrared spectroscopy as reference methods and compare the results to the results of SE-EMA analyses and Auger analyses. The results are that Auger analysis, using properly determined sensitivity factors, gives compositions which are within the uncertainty of the reference methods. SE-EMA, on the other hand, always overestimates the oxide contribution and underestimates the nitride contribution. Probable causes are discussed. © 1999 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:17 ,  Issue: 2 )

Date of Publication:

Mar 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.