By Topic

Selective SiO2-to-Si3N4 etching in inductively coupled fluorocarbon plasmas: Angular dependence of SiO2 and Si3N4 etching rates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schaepkens, Marc ; Department of Physics, University at Albany, State University of New York, Albany, New York 12222 ; Oehrlein, Gottlieb S. ; Hedlund, Christer ; Jonsson, Lars B.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

In the fabrication of microstructures in SiO2, etch selectivity of SiO2 to masking, etch stop, and underlayer materials need to be maintained at corners and inclined surfaces. The angular dependence of the SiO2-to-Si3N4 etch selectivity mechanism in a high density fluorocarbon plasma has been studied using V-groove structures. The SiO2 etch rate on 54.7° inclined surfaces is lower than on flat surfaces, while the SiO2 etch yield (atoms/ion) is a factor of 1.33 higher. The results are consistent with a chemical sputtering mechanism. The Si3N4 etch yield is greater by a factor of 2.8 for 54.7° inclined surfaces than for flat surfaces. This large enhancement is explained by a fluorocarbon surface passivation mechanism that controls Si3N4 etching. The fluorocarbon deposition is decreased at 54.7° whereas the fluorocarbon etching rate is increased at 54.7°. This produces a thinner steady-state fluorocarbon film on the inclined Si3N4 surface, and results in a large enhancement of the Si3N4 etch yield. © 1998 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:16 ,  Issue: 6 )