By Topic

Large Area 3-D Reconstructions From Underwater Optical Surveys

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pizarro, O. ; Joint Program in Oceanogr. Eng., Massachusetts Inst. of Technol., Cambridge, MA ; Eustice, R.M. ; Singh, H.

Robotic underwater vehicles are regularly performing vast optical surveys of the ocean floor. Scientists value these surveys since optical images offer high levels of detail and are easily interpreted by humans. Unfortunately, the coverage of a single image is limited by absorption and backscatter while what is generally desired is an overall view of the survey area. Recent works on underwater mosaics assume planar scenes and are applicable only to situations without much relief. We present a complete and validated system for processing optical images acquired from an underwater robotic vehicle to form a 3D reconstruction of the ocean floor. Our approach is designed for the most general conditions of wide-baseline imagery (low overlap and presence of significant 3D structure) and scales to hundreds or thousands of images. We only assume a calibrated camera system and a vehicle with uncertain and possibly drifting pose information (e.g., a compass, depth sensor, and a Doppler velocity log). Our approach is based on a combination of techniques from computer vision, photogrammetry, and robotics. We use a local to global approach to structure from motion, aided by the navigation sensors on the vehicle to generate 3D sub-maps. These sub-maps are then placed in a common reference frame that is refined by matching overlapping sub-maps. The final stage of processing is a bundle adjustment that provides the 3D structure, camera poses, and uncertainty estimates in a consistent reference frame. We present results with ground truth for structure as well as results from an oceanographic survey over a coral reef.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:34 ,  Issue: 2 )