By Topic

Queue and Channel State Awareness for Maximum Throughput Access Control in CSMA/CA-Based Wireless LANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oliveira, R. ; Univ. Nova de Lisboa, Lisbon ; Koutsopoulos, I.

This paper introduces two important enhancements to the IEEE 802.11 medium access control (MAC) protocols which are not considered in the current IEEE 802.11 MAC protocol: the channel state between the transmitter and the receiver and the node queue state. Our objective is to characterize the impact of these parameters on medium access regulation, and ultimately rely on them in order to enhance the sum throughput compared to the legacy 802.11x MAC protocols. We consider the scenario of several nodes attempting to access an access point (AP). Each node is characterized by: (i) a link quality to the AP which is essentially mapped to the PHY-layer rate that can be supported; (ii) a queue length depending on the packet arrival process at that node. We make the contention window dependent on queue size (backlog) and PHY-rate. The key idea is that a node with large PHY transmission rate and large queue size should tend to use smaller contention window, so that it gets higher chances for accessing the channel. We suggest heuristic queue and link state-aware rules for defining the contention window. We demonstrate with numerical arguments a significant enlargement in the capacity region under our modified access control policies and substantial performance improvement in terms of sum throughput for this system, compared to legacy IEEE 802.11 protocols.

Published in:

Wireless Communications and Networking Conference, 2009. WCNC 2009. IEEE

Date of Conference:

5-8 April 2009