Cart (Loading....) | Create Account
Close category search window
 

Analysis of resonant detection of terahertz radiation in high-electron mobility transistor with a nanostring/carbon nanotube as the mechanically floating gate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Leiman, V.G. ; Computational Nanoelectronics Laboratory, University of Aizu, Aizu-Wakamatsu 965–8580, Japan ; Ryzhii, M. ; Satou, A. ; Ryabova, N.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2957589 

We develop a device model for a resonant detector of electromagnetic radiation with a frequency in the terahertz (THz) range modulated by megahertz (MHz) or gigahertz (GHz) signals based on a micromachined high-electron mobility transistor (HEMT) with a metallized nanostring (NS) or metallic carbon nanotube (CNT) as mechanically the floating gate and analyze the detector operation. The device model describes both the NS/CNT mechanical motion and plasma effects in the HEMT two-dimensional electron channel. Using this model, we calculate the output gate alternating current and the detector responsivity as functions of the carrier (in the THz range) and modulation frequencies, which are in the THz and MHz (or GHz range), respectively. It is shown that the THz detector responsivity exhibits sharp and high maxima under the conditions of both mechanical and plasma resonances.

Published in:

Journal of Applied Physics  (Volume:104 ,  Issue: 2 )

Date of Publication:

Jul 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.