Cart (Loading....) | Create Account
Close category search window
 

On designing dielectric elastomer actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Moscardo, Mickael ; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA ; Zhao, Xuanhe ; Suo, Zhigang ; Lapusta, Yuri

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3000440 

Subject to a voltage, a dielectric elastomer can deform substantially, making it a desirable material for actuators. Designing such an actuator, however, has been challenging due to nonlinear equations of state, as well as multiple modes of failure, parameters of design, and measures of performance. This paper explores these issues, using a spring-roll actuator as an example. We formulate the equations of state with two degrees of freedom and describe the constraints due to several modes of failure of the elastomer, including electrical breakdown, electromechanical instability, loss of tension, and tensile rupture. Also included is the compressive limit of the spring. We show that, for the spring-roll actuator, loss of tension in the axial direction will always precede electromechanical instability. We then describe a procedure to maximize the range of actuation by choosing the parameters of design, such as the prestretch of the elastomer and the stiffness of the spring.

Published in:

Journal of Applied Physics  (Volume:104 ,  Issue: 9 )

Date of Publication:

Nov 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.