By Topic

Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Welzel, S. ; INP Greifswald, 17489 Greifswald, Felix-Hausdorff-Str. 2, Germany ; Lombardi, G. ; Davies, P.B. ; Engeln, R.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3008014 

Achieving the high sensitivity necessary for trace gas detection in the midinfrared molecular fingerprint region generally requires long absorption path lengths. In addition, for wider application, especially for field measurements, compact and cryogen free spectrometers are definitely preferable. An alternative approach to conventional linear absorption spectroscopy employing multiple pass cells for achieving high sensitivity is to combine a high finesse cavity with thermoelectrically (TE) cooled quantum cascade lasers (QCLs) and detectors. We have investigated the sensitivity limits of an entirely TE cooled system equipped with an ∼0.5 m long cavity having a small sample volume of 0.3 l. With this spectrometer cavity enhanced absorption spectroscopy employing a continuous wave QCL emitting at 7.66 μm yielded path lengths of 1080 m and a noise equivalent absorption of 2×10-7 cm-1Hz-1/2. The molecular concentration detection limit with a 20 s integration time was found to be 6×108 molecules/cm3 for N2O and 2×109 molecules/cm3 for CH4, which is good enough for the selective measurement of trace atmospheric constituents at 2.2 mbar. The main limiting factor for achieving even higher sensitivity, such as that found for larger volume multi pass cell spectrometers, is the residual mode noise of the cavity. On the other hand the application of TE cooled pulsed QCLs for integrated cavity output spectroscopy and cavity ring-down spectroscopy (CRDS) was found to be limited by the intrinsic frequency chirp- of the laser. Consequently the accuracy and advantage of an absolute internal absorption calibration, in theory inherent for CRDS experiments, are not achievable.

Published in:

Journal of Applied Physics  (Volume:104 ,  Issue: 9 )