By Topic

Regulation of a PWM rectifier in the unbalanced network state using a generalized model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. Rioual ; Direction des Etudes et Recherches, Electricite de France, Clamart, France ; H. Pouliquen ; J. -P. Louis

This study concerns the modeling and control of a pulse-width-modulated (PWM) rectifier in the case of network variations. The aim is to limit and stabilize variations of DC output voltage and line currents in such circumstances. Network variations can result in costly damage to power converters and their loads but a power converter such as the PWM rectifier, using cascade digital control, offers many capabilities to stabilize the system with optimized control. A generalized model of the PWM rectifier is first presented using the Clarke notation in order to separate the positive and negative sequences. The model is also extended to the harmonics. The cases of harmonic disturbance and an unbalanced network are then analyzed and an optimized regulation is presented for the latter case, validating the generalized model. Experimental results are proposed. The line current compensation loop method coupled with identification of network parameters offers a good solution to stabilize the PWM rectifier in an unbalanced network

Published in:

IEEE Transactions on Power Electronics  (Volume:11 ,  Issue: 3 )