By Topic

Enhanced thermal stability of carbon nanotubes by plasma surface modification in Al2O3 composites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Cho, Hoonsung ; Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA ; Shi, Donglu ; Guo, Yan ; Lian, Jie
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A plasma polymerization method was employed to deposit an ultrathin pyrrole film of 3 nm onto the surfaces of single wall carbon nanotubes (SWCNTs) and Al2O3 nanoparticles for developing high-strength nanocomposites. The surfaces of plasma coated SWCNTs and Al2O3 nanoparticles were studied by high resolution transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectroscopy. After sintering the SWCNTs-Al2O3 composites at different temperatures (maximum of 1200 °C), the thermal stability of plasma-coated SWCNTs was significantly increased, compared to their uncoated counterparts. After hot-press sintering, the SWCNTs without plasma coating were essentially decomposed into amorphous clusters in the composites, leading to degraded mechanical properties. However, under the same sintering conditions, the plasma surface modified SWCNTs were well preserved and distributed in the composite matrices. The effects of plasma surface coating on the thermal stability of SWCNTs and mechanical behavior of the nanocomposites are discussed.

Published in:

Journal of Applied Physics  (Volume:104 ,  Issue: 7 )