By Topic

Fast simulation of multistage power electronic systems with widely separated operating frequencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fung, K.K. ; Sch. of Electr. Eng., Univ. of Technol., Sydney, NSW, Australia ; Hui, S.Y.R.

This paper presents a fast and efficient way of simulating multistage power electronic circuits with different stages operating at widely separated frequencies, using the transmission-line modeling (TLM) technique. A multistage circuit can be modeled as several smaller subcircuits, which can then be simulated individually with different time steps according to their circuit time constants. Energy exchange between linked subcircuits are made possible via the use of a new TLM stub link conversion technique and improved TLM link algorithms. The proposed technique has been tested successfully in a simulation of a switched-mode power supply. Simulation results confirm that the new approach can greatly reduce the computing time of the simulation when compared with conventional TLM simulation methods. A reduction of about two-thirds of the computing time has been achieved in the simulation of a three-stage switched-mode power supply

Published in:

Power Electronics, IEEE Transactions on  (Volume:11 ,  Issue: 3 )