By Topic

An interatomic potential model for molecular dynamics simulation of silicon etching by Br+-containing plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ohta, H. ; Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan ; Iwakawa, A. ; Eriguchi, K. ; Ono, K.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2990070 

An interatomic potential model for Si–Br systems has been developed for performing classical molecular dynamics (MD) simulations. This model enables us to simulate atomic-scale reaction dynamics during Si etching processes by Br+-containing plasmas such as HBr and Br2 plasmas, which are frequently utilized in state-of-the-art techniques for the fabrication of semiconductor devices. Our potential form is based on the well-known Stillinger–Weber potential function, and the model parameters were systematically determined from a database of potential energies obtained from ab initio quantum-chemical calculations using GAUSSIAN03. For parameter fitting, we propose an improved linear scheme that does not require any complicated nonlinear fitting as that in previous studies [H. Ohta and S. Hamaguchi, J. Chem. Phys. 115, 6679 (2001)]. In this paper, we present the potential derivation and simulation results of bombardment of a Si(100) surface using a monoenergetic Br+ beam.

Published in:

Journal of Applied Physics  (Volume:104 ,  Issue: 7 )