By Topic

Blended deformable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. DeCarlo ; Dept. of Comput. & Inf. Sci., Pennsylvania Univ., Philadelphia, PA, USA ; D. Metaxas

This paper develops a new class of parameterized models based on the linear interpolation of two parameterized shapes along their main axes, using a blending function. This blending function specifies the relative contribution of each component shape on the resulting blended shape. The resulting blended shape can have aspects of each of the component shapes. Using a small number of additional parameters, blending extends the coverage of shape primitives while also providing abstraction of shape. In particular, it offers the ability to construct shapes whose genus can change. Blended models are incorporated into a physics-based shape estimation framework which uses dynamic deformable models. Finally, we present experiments involving the extraction of complex shapes from range data including examples of dynamic genus change

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:18 ,  Issue: 4 )