Cart (Loading....) | Create Account
Close category search window

Plasmonic absorption in textured silver back reflectors of thin film solar cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haug, F.-J. ; Institute of Microtechnology, University of Neuchâtel, Rue A.-L. Breguet 2, Neuchâtel CH-2000, Switzerland ; Soderstrom, T. ; Cubero, O. ; Terrazzoni-Daudrix, V.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We study the influence of different textures and dielectric environments on the excitation of surface plasmon resonances on silver because textured metallic films often serve as back contacts of silicon thin film solar cells. For coupling between light and the surface plasmon excitation we use a periodic sinusoidal structure that enables us to sample the dispersion relation at well defined conditions with a simple spectral reflection measurement. We use three layer samples of amorphous silicon/ZnO/silver to mimic the behavior of the back contact in a thin film silicon solar cell; the measurements suggest that losses due to plasmon excitation can very well extend in the spectral region where optimum reflectance is desired. An appropriate thickness of ZnO is able to reduce absorption losses. Our findings on periodic structures are also found useful to explain the behavior of surface plasmon excitation on randomly textured ZnO/Ag reflector layers.

Published in:

Journal of Applied Physics  (Volume:104 ,  Issue: 6 )

Date of Publication:

Sep 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.