By Topic

New prospects in line detection by dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Merlet ; Inst. of Comput. Sci., Hebrew Univ., Jerusalem, Israel ; J. Zerubia

The detection of lines in satellite images has drawn a lot of attention within the last 15 years. Problems of resolution, noise, and image understanding are involved, and one of the best methods developed so far is the F* algorithm of Fischler, which achieves robustness, rightness, and rapidity. Like other methods of dynamic programming, it consists of defining a cost which depends on local information; then a summation-minimization process in the image is performed. The authors present herein a mathematical formalization of the F* algorithm, which allows them to extend the cost both to cliques of more than two points (to deal with the contrast), and to neighborhoods of size larger than one (to take into account the curvature). Thus, all the needed information (contrast, grey-level, curvature) is synthesized in a unique cost function defined on the digital original image. This cost is used to detect roads and valleys in satellite images (SPOT)

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:18 ,  Issue: 4 )