Cart (Loading....) | Create Account
Close category search window
 

Principles of design of a set-reset finite state logic nanomachine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Klein, Michael ; The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel ; Levine, R.D. ; Remacle, F.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2970060 

Pulsed electrical set and reset inputs are used to simulate the temporal action of a finite state machine in a three terminal configuration for a variety of arrangements. The gate electrode is necessary only if it is of interest to tune the tunneling rate and to compensate for background charges. When the output is the current, a source and drain electrodes are required. If the output is determined by measuring charge occupancy, then a single junction suffices. The electron transfer rates are computed from the free energy change for a single electron transfer to or from a quantum dot of size such that only charge quantization matters. For a small enough dot the device could operate at room temperature. An asymmetric configuration of the source and drain favors a longer term time preservation of the memory of the device. An alternative design that operates with the same energetics and kinetic parameters is to pulse the resistance rather than the voltage.

Published in:

Journal of Applied Physics  (Volume:104 ,  Issue: 4 )

Date of Publication:

Aug 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.