Cart (Loading....) | Create Account
Close category search window

Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Moon, J.S. ; HRL Labs. LLC, Mali, CA ; Curtis, D. ; Hu, M. ; Wong, D.
more authors

We report dc and the first-ever measured small-signal radio-frequency (RF) performance of epitaxial-graphene RF field-effect transistors (FETs), where the epitaxial-graphene layer is formed by graphitization of 2-in-diameter Si-face semi-insulating 6H-SiC (0001) substrates. The gate is processed with a metal gate on top of a high-k Al2 O3 gate dielectric deposited via an atomic-layer-deposition method. With a gate length (Lg) of 2 mum and an extrinsic transconductance of 148 mS/mm, the extrinsic current-gain cutoff frequency (fT) is measured as 4.4 GHz, yielding an extrinsic fT ldr Lg of 8.8 GHz middot mum. This is comparable to that of Si NMOS. With graphene FETs fabricated in a layout similar to those of Si n-MOSFETs, on-state current density increases dramatically to as high as 1.18 A/mm at Vds = 1 V and 3 A/mm at Vds = 5 V. The current drive level is the highest ever observed in any semiconductor FETs.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.