By Topic

Multisource Self-Calibration for Sensor Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stefan J. Wijnholds ; ASTRON, Dwingeloo, Netherlands ; Alle-Jan van der Veen

Calibration of a sensor array is more involved if the antennas have direction dependent gains and multiple calibrator sources are simultaneously present. We study this case for a sensor array with arbitrary geometry but identical elements, i.e., elements with the same direction dependent gain pattern. A weighted alternating least squares (WALS) algorithm is derived that iteratively solves for the direction independent complex gains of the array elements, their noise powers and their gains in the direction of the calibrator sources. An extension of the problem is the case where the apparent calibrator source locations are unknown, e.g., due to refractive propagation paths. For this case, the WALS method is supplemented with weighted subspace fitting (WSF) direction finding techniques. Using Monte Carlo simulations we demonstrate that both methods are asymptotically statistically efficient and converge within two iterations even in cases of low SNR.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 9 )