By Topic

Distributed Estimation in Energy-Constrained Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junlin Li ; Georgia Inst. of Technol., Atlanta, GA, USA ; Ghassan AlRegib

In this paper, we consider distributed estimation of a noise-corrupted deterministic parameter in energy-constrained wireless sensor networks from energy-distortion perspective. Given a total energy budget allowable to be used by all sensors, there exists a tradeoff between the subset of active sensors and the energy used by each active sensor in order to minimize the estimation MSE. To determine the optimal quantization bit rate and transmission energy of each sensor, a concept of equivalent unit-energy MSE function is introduced. Based on this concept, an optimal energy-constrained distributed estimation algorithm for homogeneous sensor networks and a quasi-optimal energy-constrained distributed estimation algorithm for heterogeneous sensor networks are proposed. Moreover, the theoretical energy-distortion performance bound for distributed estimation is addressed and it is shown that the proposed algorithm is quasi-optimal within a factor 2 of the theoretical lower bound. Simulation results also show that the proposed method can achieve a significant reduction in the estimation MSE when compared with other uniform schemes. Finally, the proposed algorithm is easy to implement in a distributed manner and it adapts well to the dynamic sensor environments.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 10 )