By Topic

Graph Classification by Means of Lipschitz Embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Riesen, K. ; Inst. of Comput. Sci. & Appl. Math., Univ. of Bern, Bern, Switzerland ; Bunke, H.

In pattern recognition and related fields, graph-based representations offer a versatile alternative to the widely used feature vectors. Therefore, an emerging trend of representing objects by graphs can be observed. This trend is intensified by the development of novel approaches in graph-based machine learning, such as graph kernels or graph-embedding techniques. These procedures overcome a major drawback of graphs, which consists of a serious lack of algorithms for classification. This paper is inspired by the idea of representing graphs through dissimilarities and extends our previous work to the more general setting of Lipschitz embeddings. In an experimental evaluation, we empirically confirm that classifiers that rely on the original graph distances can be outperformed by a classification system using the Lipschitz embedded graphs.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:39 ,  Issue: 6 )