By Topic

A Particle Image Velocimetry Study of Vibrating Ionic Polymer Metal Composites in Aqueous Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sean D. Peterson ; Dept. of Mech. & Aerosp. Eng., Polytech. Inst. of New York Univ., Brooklyn, NY, USA ; Maurizio Porfiri ; Alessandro Rovardi

Low power consumption and activation voltage combined with high flexibility and minimal weight make ionic polymer metal composites (IPMCs) well-suited for miniaturized underwater propulsion systems. In the present study, we investigate the flow field generated by an IPMC strip vibrating in a quiescent aqueous environment using planar particle image velocimetry. We use the time-averaged flow field to compute the momentum transfer to the fluid and estimate the mean thrust generated by the vibrating actuator. We find that the mean thrust produced by the vibrating IPMC increases with the Reynolds number, defined by the maximum tip speed and IPMC width, and is only marginally affected by the relative vibration amplitude. The results of this study can guide the optimization of IPMC-based propulsion systems for miniature biomimetic robotic swimmers.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:14 ,  Issue: 4 )