By Topic

Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rubaek, T. ; Electr. Eng. Dept., Tech. Univ. of Denmark (DTU), Lyngby, Denmark ; Kim, O.S. ; Meincke, P.

The microwave imaging system currently being developed at the Technical University of Denmark is described and its performance tested on simulated data. The system uses an iterative Newton-based imaging algorithm for reconstructing the images in conjunction with an efficient method-of-moments solution of the associated forward scattering problem. A cylindrical multistatic antenna setup with 32 horizontally oriented antennas is used for collecting the data. It has been found that formulating the imaging algorithm in terms of the logarithm of the amplitude and the unwrapped phase of the measured signals improves its performance when compared to the more commonly used complex phasor formulation. This improvement is illustrated by imaging a simulated hemispherical breast model using both formulations. In addition to this, the importance of using the correct position and orientation of the antennas in the measurement system is shown by imaging the same breast model using a measurement setup in which the antennas are vertically oriented.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 7 )