Cart (Loading....) | Create Account
Close category search window
 

Parameterization of the Land Parameter Retrieval Model for L-Band Observations Using the NAFE'05 Data Set

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Jeu, R.A.M. ; Dept. of Hydrol. & GeoEnvironmental Sci., Vrije Univ. Amsterdam, Amsterdam, Netherlands ; Holmes, T.R.H. ; Panciera, R. ; Walker, J.P.

The Land Parameter Retrieval Model (LPRM) has been successfully applied to retrieve soil moisture from space-borne passive microwave observations at C-, X-, or Ku-band and high incidence angles (50deg-55deg). However, LPRM had never been applied to lower angles or to L-band observations. This letter describes the parameterization and performance of LPRM using aircraft and ground data from the National Airborne Field Experiment 2005. This experiment was undertaken in November 2005 in the Goulburn River catchment, which is located in southeastern Australia. It was found that model convergence could only be achieved with a temporally dynamic roughness. The roughness was parameterized according to incidence angle and soil moisture. These findings were integrated in LPRM, resulting in one uniform parameterization for all sites. The parameterized LPRM correlated well with field observations at 5-cm depth (r = 0.93 based on all sites) with a negligible bias and an accuracy of 0.06 m3middotm-3. These results demonstrate comparable retrieval accuracies as the official SMOS soil-moisture retrieval algorithm (L-MEB), but without the need for the ancillary data that are required by L-MEB. However, care should be taken when using the proposed dynamic roughness model as it is based on a limited data set, and a more thorough evaluation is necessary to test the validity of this new approach to a wider range of conditions.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 4 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.