By Topic

Tomographic Imaging of Dynamic Objects With the Ensemble Kalman Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Butala, M.D. ; Remote Sensing & Space Sci. Group, Univ. of Illinois at Urbana-Champaign, Urbana, IL ; Frazin, R.A. ; Chen, Y. ; Kamalabadi, F.

We address the image formation of a dynamic object from projections by formulating it as a state estimation problem. The problem is solved with the ensemble Kalman filter (EnKF), a Monte Carlo algorithm that is computationally tractable when the state dimension is large. In this paper, we first rigorously address the convergence of the EnKF. Then, the effectiveness of the EnKF is demonstrated in a numerical experiment where a highly variable object is reconstructed from its projections, an imaging modality not yet explored with the EnKF. The results show that the EnKF can yield estimates of almost equal quality as the optimal Kalman filter but at a fraction of the computational effort. Further experiments explore the rate of convergence of the EnKF, its performance relative to an idealized particle filter, and implications of modeling the system dynamics as a random walk.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 7 )