By Topic

Color Texture Segmentation Based on the Modal Energy of Deformable Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michail Krinidis ; Dept. of Inf., Aristotle Univ. of Thessaloniki, Thessaloniki ; Ioannis Pitas

This paper presents a new approach for the segmentation of color textured images, which is based on a novel energy function. The proposed energy function, which expresses the local smoothness of an image area, is derived by exploiting an intermediate step of modal analysis that is utilized in order to describe and analyze the deformations of a 3-D deformable surface model. The external forces that attract the 3-D deformable surface model combine the intensity of the image pixels with the spatial information of local image regions. The proposed image segmentation algorithm has two steps. First, a color quantization scheme, which is based on the node displacements of the deformable surface model, is utilized in order to decrease the number of colors in the image. Then, the proposed energy function is used as a criterion for a region growing algorithm. The final segmentation of the image is derived by a region merge approach. The proposed method was applied to the Berkeley segmentation database. The obtained results show good segmentation robustness, when compared to other state of the art image segmentation algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 7 )