By Topic

A Multiyear Security Constrained Hybrid Generation-Transmission Expansion Planning Algorithm Including Fuel Supply Costs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sepasian, M.S. ; Power & Water Ind. Univ., Tehran, Iran ; Seifi, H. ; Foroud, A.A. ; Hatami, A.R.

This paper addresses the problem of a multiyear security constrained hybrid generation-transmission expansion planning. It is assumed that the overall generation requirements of a network are known along the planning horizon, but their allocations are unknown. Moreover the fuel cost throughout the network is not uniform. By allocating the overall generation capacity among the grid nodes, and determining the new transmission element additions along the planning horizon, the overall cost of the system is minimized. The problem is formulated as a mixed integer nonlinear programming problem, which for a large-scale system is very difficult to solve. In this paper a new constructive heuristic approach is proposed, so that the problem can be readily solved. To assess the capabilities of the proposed approach, two networks are studied: the Garver test grid as a small grid and the Iranian power grid as a large-scale grid.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 3 )