By Topic

Visual-Based Impedance Control of Out-of-Plane Cell Injection Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haibo Huang ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon, China ; Dong Sun ; Mills, J.K. ; Li, W.J.
more authors

In this paper, a vision-based impedance control algorithm is proposed to regulate the cell injection force, based on dynamic modeling conducted on a laboratory test-bed cell injection system. The injection force is initially calibrated to derive the relationship between the force and the cell deformation utilizing a cell membrane point-load model. To increase the success rate of injection, the injector is positioned out of the focal plane of the camera, used to obtain visual feedback for the injection process. In this out-of-plane injection process, the total cell membrane deformation is estimated, based on the X-Y coordinate frame deformation of the cell, as measured with a microscope, and the known angle between the injector and the X-Y plane. Further, a relationship between the injection force and the injector displacement of the cell membrane, as observed with the camera, is derived. Based on this visual force estimation scheme, an impedance control algorithm is developed. Experimental results of the proposed injection method are given which validate the approach.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 3 )