By Topic

Scheduling of Demand Side Resources Using Binary Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pedrasa, M.A.A. ; Centre for Energy & Environ. Markets, Univ. of New South Wales, Sydney, NSW, Australia ; Spooner, T.D. ; MacGill, I.F.

Interruptible loads represent highly valuable demand side resources within the electricity industry. However, maximizing their potential value in terms of system security and scheduling is a considerable challenge because of their widely varying and potentially complex operational characteristics. This paper investigates the use of binary particle swarm optimization (BPSO) to schedule a significant number of varied interruptible loads over 16 h. The scheduling objective is to achieve a system requirement of total hourly curtailments while satisfying the operational constraints of the available interruptible loads, minimizing the total payment to them and minimizing the frequency of interruptions imposed upon them. This multiobjective optimization problem was simplified by using a single aggregate objective function. The BPSO algorithm proved capable of achieving near-optimal solutions in manageable computational time-frames for this relatively complex, nonlinear and noncontinuous problem. The effectiveness of the approach was further improved by dividing the swarm into several subswarms. The proposed scheduling technique demonstrated useful performance for a relatively challenging scheduling task, and would seem to offer some potential advantages in scheduling significant numbers of widely varied and technically complex interruptible loads.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 3 )