By Topic

Target tracking in sensor networks using statistical graphical models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lufeng Shi ; Dept. of Electr. & Comput. Eng., Michigan Technol. Univ., Houghton, MI ; Jindong Tan ; Zhijun Zhao

Recent advancement in sensor networks provides a platform for applications that requires in-network data fusion and parallel algorithms. However, processing data in parallel while propagating at low latency is very challenging. Also, implementation of these algorithms is limited by various constraints including energy, computation costs and complex network topology. In this paper, a statistical graphical model based algorithm is developed for in-network processing, which can be applied to tracking problems in the sensor networks. This algorithm represents the complex topology of a sensor network with a simple clique tree. It further utilizes the message passing algorithms to effectively make accurate inferences about the target location. The simulation shows that the algorithm can accurately track the target in a large scale random distributed sensor field with low complexity and low cost. The algorithm is also proved to be robust, as the simulation random disabled some sensors during the tracking phase.

Published in:

Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on

Date of Conference:

22-25 Feb. 2009