By Topic

A unified approach to statistical tomography using coordinate descent optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. A. Bouman ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; K. Sauer

Over the past years there has been considerable interest in statistically optimal reconstruction of cross-sectional images from tomographic data. In particular, a variety of such algorithms have been proposed for maximum a posteriori (MAP) reconstruction from emission tomographic data. While MAP estimation requires the solution of an optimization problem, most existing reconstruction algorithms take an indirect approach based on the expectation maximization (EM) algorithm. We propose a new approach to statistically optimal image reconstruction based on direct optimization of the MAP criterion. The key to this direct optimization approach is greedy pixel-wise computations known as iterative coordinate decent (ICD). We propose a novel method for computing the ICD updates, which we call ICD/Newton-Raphson. We show that ICD/Newton-Raphson requires approximately the same amount of computation per iteration as EM-based approaches, but the new method converges much more rapidly (in our experiments, typically five to ten iterations). Other advantages of the ICD/Newton-Raphson method are that it is easily applied to MAP estimation of transmission tomograms, and typical convex constraints, such as positivity, are easily incorporated

Published in:

IEEE Transactions on Image Processing  (Volume:5 ,  Issue: 3 )