Cart (Loading....) | Create Account
Close category search window
 

A regularization approach to joint blur identification and image restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
You, Y.-L. ; Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA ; Kaveh, M.

The primary difficulty with blind image restoration, or joint blur identification and image restoration, is insufficient information. This calls for proper incorporation of a priori knowledge about the image and the point-spread function (PSF). A well-known space-adaptive regularization method for image restoration is extended to address this problem. This new method effectively utilizes, among others, the piecewise smoothness of both the image and the PSF. It attempts to minimize a cost function consisting of a restoration error measure and two regularization terms (one for the image and the other for the blur) subject to other hard constraints. A scale problem inherent to the cost function is identified, which, if not properly treated, may hinder the minimization/blind restoration process. Alternating minimization is proposed to solve this problem so that algorithmic efficiency as well as simplicity is significantly increased. Two implementations of alternating minimization based on steepest descent and conjugate gradient methods are presented. Good performance is observed with numerically and photographically blurred images, even though no stringent assumptions about the structure of the underlying blur operator is made

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

Mar 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.