By Topic

A Parallel Implementation of the 2D Wavelet Transform Using CUDA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joaquín Franco ; Dipt. de Ing. y Tecnol. de Comput., Univ. de Murcia, Murcia ; Gregorio Bernabé ; Juan Fernández ; Manuel E. Acacio

There is a multicore platform that is currently concentrating an enormous attention due to its tremendous potential in terms of sustained performance: the NVIDIA Tesla boards. These cards intended for general-purpose computing on graphic processing units (GPGPUs) are used as data-parallel computing devices. They are based on the Computed Unified Device Architecture (CUDA) which is common to the latest NVIDIA GPUs. The bottom line is a multicore platform which provides an enormous potential performance benefit driven by a non-traditional programming model. In this paper we try to provide some insight into the peculiarities of CUDA in order to target scientific computing by means of a specific example. In particular, we show that the parallelization of the two-dimensional fast wavelet transform for the NVIDIA Tesla C870 achieves a speedup of 20.8 for an image size of 8192times8192, when compared with the fastest host-only version implementation using OpenMP and including the data transfers between main memory and device memory.

Published in:

2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing

Date of Conference:

18-20 Feb. 2009