By Topic

Improving information quality of sensory data through asynchronous sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Wang ; Dept. of Comput. Sci. & Eng., Univ. of Texas at Arlington, Arlington, TX ; Yonghe Liu ; Das, S.K.

In this paper, asynchronous sampling is proposed as a novel approach to improve the information quality of sensory data through shifting the sampling moments of sensors from each other. The exponential correlation model and the entropy model for the sensory data are introduced to quantify their information quality. An asynchronous sampling strategy, EASS, is presented accordingly to assign equal time shifts to sensors, which in turn reduces data correlation and thus improves information quality in terms of increased entropy of sensory data. A lower bound for EASS is derived to evaluate its effectiveness. Simulation results based on both synthetic data and experimental data are satisfactory.

Published in:

Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on

Date of Conference:

9-13 March 2009