By Topic

Probabilistic Computation of Wind Farm Power Generation Based on Wind Turbine Dynamic Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Herman Bayem ; Dept. of Power & Energy Syst., SUPELEC, Paris ; Yannick Phulpin ; Philippe Dessante ; Julien Bect

This paper addresses the problem of predicting a wind farm's power generation when no or few statistical data is available. The study is based on a time-series wind speed model and on a simple dynamic model of a DFIG wind turbine including cut-off and cut-in behaviours. The wind turbine is modeled as a stochastic hybrid system with three operation modes. Numerical results, obtained using Monte-Carlo simulations, provide the annual distribution of a wind farm's active power generation. For different numbers of wind turbines, we compare the numerical results obtained using the dynamic model with those obtained considering the wind turbine's steady-state power curve. Simulations show that the wind turbine's dynamics do not need to be considered for analyzing the annual distribution of a wind farm generation.

Published in:

Probabilistic Methods Applied to Power Systems, 2008. PMAPS '08. Proceedings of the 10th International Conference on

Date of Conference:

25-29 May 2008