By Topic

Physical Model of Field Enhancement and Edge Effects of FinFET Charge-Trapping NAND Flash Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tzu-Hsuan Hsu ; Emerging Central Lab. (ECL), Macronix Int. Co., Ltd. (MXIC), Hsinchu ; Hang-Ting Lue ; Ya-Chin King ; Yi-Hsuan Hsiao
more authors

The physical model for field enhancement (FE) and the edge effects of body-tied FinFET charge-trapping NAND Flash devices are extensively studied in this paper. First, analytical equations are derived to provide insight to the FE effect for FinFET devices, and these analytical results are validated by 3-D TCAD simulation and experimental verification. Next, complicated programming and erasing characteristics and transconductance and subthreshold slope (gm/SS) behaviors are completely explained by the nonuniform injection behavior along various corner edges in FinFET. FE allows high program and erase speed and larger memory window. On the other hand, the edge effect complicates the device DC I-V, as well as programming and erasing characteristics, and these must be taken into account in memory circuit design.

Published in:

IEEE Transactions on Electron Devices  (Volume:56 ,  Issue: 6 )