By Topic

Advanced System Technologies and Field Demonstration for In-Building Optical-Wireless Network With Integrated Broadband Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chowdhury, A. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Hung-Chang Chien ; Yu-Ting Hsueh ; Gee-Kung Chang

This work describes a concept of a hierarchical radio-over-fiber (RoF) network architecture that provides both intra- and inter-network connectivity for end user wireline and wireless terminals with high-bandwidth, in-building access applications. An intelligent gateway router (IGR) is proposed as a unified platform to accommodate multi-gigabit, millimeter-wave services at 60-GHz band as well as being backward compatible with all current wireless access technologies such as WiFi and WiMAX. In addition, we further present an advanced multi-band optical carrier generation technique that can simultaneously deliver independent 60-GHz mm-wave, 2.4-GHz WiFi, and 5.8-GHz WiMAX signals efficiently carried over the same wavelength, and is suitable for the proposed IGR. Finally, we report, for the first time to our knowledge, a campus-wide field trial demonstration of RoF system transmitting uncompressed 270-Mbps standard definition (SD) and 1.485-Gbps high definition (HD) real-time video contents carried by 2.4-GHz radio and 60-GHz millimeter wave signals, respectively, between two on-campus research buildings distanced over 2.5-km standard single mode fiber (SMF-28) through the Georgia Institute of Technology's (GT) fiber network.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 12 )