Cart (Loading....) | Create Account
Close category search window
 

Self-Similarity and Points of Interest

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Maver, J. ; Fac. of Arts, Dept. of Libr. & Inf. Sci. & Book Studies, Univ. of Ljubljana, Ljubljana, Slovenia

In this work, we present a new approach to interest point detection. Different types of features in images are detected by using a common computational concept. The proposed approach considers the total variability of local regions. The total sum of squares computed on the intensity values of a local circular region is divided into three components: between-circumferences sum of squares, between-radii sum of squares, and the remainder. These three components normalized by the total sum of squares represent three new saliency measures, namely, radial, tangential, and residual. The saliency measures are computed for regions with different radii and scale spaces are built in this way. Local extrema in scale space of each of the saliency measures are located. They represent features with complementary image properties: blob-like features, corner-like features, and highly textured points. Results obtained on image sets of different object classes and image sets under different types of photometric and geometric transformations show high robustness of the method to intraclass variations as well as to different photometric transformations and moderate geometric transformations and compare favorably with the results obtained by the leading interest point detectors from the literature. The proposed approach gives a rich set of highly distinctive local regions that can be used for object recognition and image matching.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.