Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Correction of Spatially Varying Image and Video Motion Blur Using a Hybrid Camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu-Wing Tai ; Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Hao Du ; Brown, M.S. ; Lin, S.

We describe a novel approach to reduce spatially varying motion blur in video and images using a hybrid camera system. A hybrid camera is a standard video camera that is coupled with an auxiliary low-resolution camera sharing the same optical path but capturing at a significantly higher frame rate. The auxiliary video is temporally sharper but at a lower resolution, while the lower frame-rate video has higher spatial resolution but is susceptible to motion blur. Our deblurring approach uses the data from these two video streams to reduce spatially varying motion blur in the high-resolution camera with a technique that combines both deconvolution and super-resolution. Our algorithm also incorporates a refinement of the spatially varying blur kernels to further improve results. Our approach can reduce motion blur from the high-resolution video as well as estimate new high-resolution frames at a higher frame rate. Experimental results on a variety of inputs demonstrate notable improvement over current state-of-the-art methods in image/video deblurring.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 6 )