By Topic

SOAR: Simple Opportunistic Adaptive Routing Protocol for Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rozner, E. ; Dept. of Comput. Sci., Univ. of Texas at Austin, Austin, TX, USA ; Seshadri, J. ; Mehta, Y. ; Lili Qiu

Multihop wireless mesh networks are becoming a new attractive communication paradigm owing to their low cost and ease of deployment. Routing protocols are critical to the performance and reliability of wireless mesh networks. Traditional routing protocols send traffic along predetermined paths and face difficulties in coping with unreliable and unpredictable wireless medium. In this paper, we propose a simple opportunistic adaptive routing protocol (SOAR) to explicitly support multiple simultaneous flows in wireless mesh networks. SOAR incorporates the following four major components to achieve high throughput and fairness: 1) adaptive forwarding path selection to leverage path diversity while minimizing duplicate transmissions, 2) priority timer-based forwarding to let only the best forwarding node forward the packet, 3) local loss recovery to efficiently detect and retransmit lost packets, and 4) adaptive rate control to determine an appropriate sending rate according to the current network conditions. We implement SOAR in both NS-2 simulation and an 18-node wireless mesh testbed. Our extensive evaluation shows that SOAR significantly outperforms traditional routing and a seminal opportunistic routing protocol, ExOR, under a wide range of scenarios.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 12 )