Cart (Loading....) | Create Account
Close category search window
 

A Lightweight Collaborative Fault Tolerant Target Localization System for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Merhi, Z. ; Univ. of Louisiana at Lafayette, Lafayette, LA, USA ; Elgamel, M. ; Bayoumi, M.A.

Efficient target localization in wireless sensor networks is a complex and challenging task. Many past assumptions for target localization are not valid for wireless sensor networks. Limited hardware resources, energy conservation, and noise disruption due to wireless channel contention and instrumentation noise pose new constraints on designers nowadays. In this work, a lightweight acoustic target localization system for wireless sensor networks based on time difference of arrival (TDOA) is presented. When an event is detected, each sensor belonging to a group calculates an estimate of the target's location. A fuzzyART data fusion center detects errors and fuses estimates according to a decision tree based on spatial correlation and consensus vote. Moreover, a MAC protocol for wireless sensor networks (EB-MAC) is developed which is tailored for event-based systems that characterizes acoustic target localization systems. The system was implemented on MicaZ motes with TinyOS and a PIC 18F8720 microcontroller board as a coprocessor. Errors were detected and eliminated hence acquiring a fault tolerant operation. Furthermore, EB-MAC provided a reliable communication platform where high channel contention was lowered while maintaining high throughput.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.