Cart (Loading....) | Create Account
Close category search window

Feature Selection Using f-Information Measures in Fuzzy Approximation Spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maji, P. ; Machine Intell. Unit, Indian Stat. Inst., Kolkata, India ; Pal, S.K.

The selection of nonredundant and relevant features of real-valued data sets is a highly challenging problem. A novel feature selection method is presented here based on fuzzy-rough sets by maximizing the relevance and minimizing the redundancy of the selected features. By introducing the fuzzy equivalence partition matrix, a novel representation of Shannon's entropy for fuzzy approximation spaces is proposed to measure the relevance and redundancy of features suitable for real-valued data sets. The fuzzy equivalence partition matrix also offers an efficient way to calculate many more information measures, termed as f-information measures. Several f-information measures are shown to be effective for selecting nonredundant and relevant features of real-valued data sets. This paper compares the performance of different f-information measures for feature selection in fuzzy approximation spaces. Some quantitative indexes are introduced based on fuzzy-rough sets for evaluating the performance of proposed method. The effectiveness of the proposed method, along with a comparison with other methods, is demonstrated on a set of real-life data sets.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 6 )

Date of Publication:

June 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.